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Given a regular Norlund-method (N, p) one can prove that the sequence {c,(z)}
of the Norlund-transforms of a power series f(z) =322, a,2z" with radius of con-
vergence r = 1 converges in at most countably many points outside the unit disc. In
this paper we show that for a class of non-regular Norlund-methods the sequence
{o.(2)} converges to an analytic function in a disc which strictly contains the unit
disc, and the convergence is uniform on any compact subset of this disc. © 1992
Academic Press, Inc.

1. INTRODUCTION
As is well known, a Norlund-method is defined in the following way.

DeFINITION 1. Let {p,};°, be a sequence of complex numbers such
that P,:=>"7_, p,#0 for all ne N,. Then the triangular matrix 4 = (a,,)
with the elements

anv=%%v forOsvsn and %,=0 forv>n

n

generates a summability method which is called Norlund-method (N, p).

Many different items about Norlund-methods have been discussed in the
literature (see, for example, [1, 2, 4-7, 11]). The present paper has a con-
nection to a theorem due to Léja [8] and results of Luh [9]. Léja proved
that for a regular Norlund-method the sequence {o,(z)} of the Norlund-
transforms of power series f(z)=3.", a,z", with radius of convergence 1,
converges in at most countably many points outside the unit disc
D={z:|z] <1}. And it was shown by Luh that for a regular (N, p)-
method we have Iim,_, , {max, |s,(z)|}'"=R for each closed arc I on
|zl =R>1.

33

0021-9045/92 $3.00

Copyright © 1992 by Academic Press, Inc.
All rights of reproduction in any form reserved.



34 KARIN STADTMULLER

Neglecting the proposition of regularity for the Norlund-method, we will
show that the sequence {s,(z)} can converge compactly (i.e., uniformly on
each compact subset) to an analytic function in a disc which strictly
contains the unit disc. Furthermore we will investigate the growth of
{6,(z)} outside the domain of convergence, which will lead us to results
analogous to those of Léja and Luh,

2. NOTATIONS AND SOME PROPERTIES OF (N, p)-METHODS

Let f(z)=32 ¢ a,z’ be a power series with radius of convergence 1 and
let us consider its Norlund-transforms

1

P Y Pnovsfz),  where s(z)= Y a,z"

n v=0 u=0

o,.(z) =

We say that the power series f(z)=3_, a,z’ is summable by the method
(N, p) in a point z,€ C if the sequence {0,(z,)} converges, and we say that
the power series is compactly summable by the method (¥, p) in a domain
G to a function o(z) if {o,(z)} converges uniformly to ¢(z) on each
compact subset of G (notation o,(2) = o(z)).

We first give some results about special properties of Norlund-methods.

From the theorem of Toeplitz, Schur, and Silverman (see, e.g., [10,
p. 11]) it follows immediately that a Norlund-method (N, p) is regular if
and only if the following two conditions hold:

lim 22=0  and sup Y. Ipl<co.

n—> o0 n n |Pn| y=0

From the following theorem we can deduce that for each « e C there exists
a sequence {p,} such that lim, , , p,/P,=«.

THEOREM 1. Let {a,};7_o be a sequence of complex numbers with ay= 1
a,# 1 for all ne N; then there exists a sequence {p,}_o, P.€C, with the
properties

P,=Y p,#0  and 7
v=0 n

We omit the simple proof.

For a Norlund-method (N, p) which is defined by a sequence
p={p.}7 -0 we now show that the convergence of the sequence
{p./P.} 7o implies the convergence of {p,_,/P,} >, for each fixed ve N,.
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THEOREM 2. Let (N, p) be a Nérlund-method with lim, _, , p,/P,=u
(eeC). Then for each fixed ve Ny we have

p————"”:a(l —a)".

n

lim

n— o

Proof. For v=0 there is nothing left to prove. Now let ve N be fixed;
then for n = v we get

pngvzpnfv'vl:ll Pn‘k~l:pn-v.vl:ll _pngk
P P Pn—k P Pn~k

n n—v k=0 n—v k=0

from which together with lim,, _, ., p,/P, = the statement of our theorem
follows.

Our next result shows that there is a connection between the
convergence of {p,/P,} and the sequence {|P,|'"}.

THEOREM 3. Iflim,_ , p,/P,=a (a€C) then we have lim,,_, ., |P,|'" =
1/]1 —af.

Proof. From Ilim,_ . p,/P,=a and p,/P,=1—P,_,/P, we get
lim,_, . P,_,/P,=1—a which implies our assertion.

3. (N, p)-SUMMABILITY OF THE GEOMETRIC SEQUENCE AND POWER SERIES

It has been shown in [3] that the behaviour of matrix-transforms of
{z"} is of great relevance for the behaviour of the considered matrix-trans-
forms of power series. We therefore first examine the (N, p)-transforms of
the geometric sequence {z”} which are given by

1 n
Tn(Z) ::F Z pnfvzv (HGNO).

n v=0

We shall prove the following result.

THEOREM 4. Let (N, p) be a Norlund-method and oeC. Then the
Sfollowing two statements are equivalent:

(i) lim,_ p,/P,=0.

(ii) The (N, p)-transforms of the geometric sequence {t,(z)} are
compactly convergent in |z|<1/|l—a| to the limit function 1(z)=

/(1 — (1 —a)z).
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Proof. 1. We assume that (N, p) is a Norlund-method which satisfies

o
n(Z)'— Z Pn—Z Ti—l—m?ﬁm:l—(l—a)z'

nvO

(a) For a#1 the limit function has the Taylor expansion z(z)=
Yo (1—a) 2" in |z| <1/|1 —«f. Since {7,(z)} converges compactly to
7(z) in |z| < 1/|1 —a|, we obtain

7,(0)= F—»I(O)=tx (n— o0).

n

(b) For a=1 our assumption is that 7,(z) 51 from which we
easily conclude that lim, , _ p,/P,=1.

2. We assume that (N, p) is a Norlund-method which satisfies
lim, ., p./P,=2
(a) For a# 1 we show that {r,(z)} converges compactly to 7(z)=
a/(l—(1-a)z2)=2" g a(l —a)' z¥in |z| < 1/|1 —a.

(i) Given r with O0<r<1/|1—«| we choose &£¢>0 such that
(]t —a|+&)r < 1. Then there existsan Ne Nsuch that 3% ., (|1 —a| r)’' <
¢/lal and ¥ o1 {1 —a] +&)r}’ <e/(Ja| +¢). For n> N we obtain

oo

max [1,(z) — 1 < Y |2 —a(t—a)| 4+ lel Y (11—ar)"
izl <r y=0 Pn v=n+1
N
Prnv
< 1-—
vg() Pn a( a)
e |Pas| ‘ v
+ ), - r4+Y el (I1—alr) +e
yv=N+1 n v=N+1
o |p Lo e
< (1 —a) |+ L4 2e.
v§=:0 Pn v:%+l Pn

By Theorem 2 the first sum converges to zero for n — .

(ii) To calculate the term X% _ . ., |p,_./P,| r’ we first look at the
convergence of the sequence {p,_./P,} .o (v fixed). By assumption we
have lim, _, , p,/P,=a and therefore to & >0 given above there exists an
N,eN such that for all n> N, we have |p,/P,—0a| <& For n> N, and
each v with 0<v<n— N, we get
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’pn~v = pn—v 'vl:f Pn‘k~l
Pn Pn~v k=0 Pnfk
v—1
Pu_y Pn—k
= [—] - | R it
n—v k];[O n—k

< (o +e)({1 ~af +¢)".

If we choose N, large enough, then by Theorem 3 we obtain for n> N,

Plo>—
P> el 5oy

(iii) For all n> N+ N, we now have

n n—Ny—1 n
Pn—v v Pn—y v Pnv v
—r = —r + —r
v=§l:+l Pn v=§/:+1 Pn v=nZ~Nl Pn
n~N —1 N
S(al+e) Y (l—al+e) r+m=- Y iplrm*
v=N+1 ani u=0

o

<(al+e) Y {(H—aj+e)r}

v=N+1

+{(1~al+&)r}"- ¥ A

i

n=0

e+ {(|1l—al+e)r}™- M,

where M =YL, |p,/r*| is a constant. Since (|l —a|+¢&)r<1 it follows
that 37 _~ ., |p._./P,| r’ tends to zero for n — co. Hence, together with (i)
we obtain that

max [tu(z) = 1(2)| >0  (n— 00),

and because r, 0 <r<1/|1 —a|, was arbitrary we have

7(z2).

7u(2) 12l < 1/11 ~ o)

(b) Let x=1. We now show that {r,(z)} is compactly convergent to
1(z)=1 in C. Let re (0, ) be arbitrary but fixed and &>0 such that
r-e<1. Like in (ii) of part (a) we can find an N,eN such that
{Pn_o/Pal <(1+¢)-¢" for all n> N, and 0 <v < n—~ N, and furthermore by
Theorem 3 that {P,]| > K", where K> 1 is a constant with r/K< 1. For
n> N, we obtain



38 KARIN STADTMULLER

max |1,(z) — 1| =max

lzl<r lzl<r

o Py v
vgo Pn : ll

n

= %’i—l +nv§'1 % rv+v=niN2 P_;);_v o
< %—1 +(1+e)-{1—_1;—1}+<;_<)".§0 |f5|_

As n tends to infinity we have |p,/P,— 1| -0 and (r/K)" — 0 and because
£>0 was arbitrarily small we have

max |1,(z)—1] -0 (n—> )

Iz}
from which it follows that
7,(2) = 1.
This proves the theorem.

From this result we can deduce the following theorem about the
Norlund-summability of power series.

THEOREM 5. Let be ae€C and (N, p) a Noérlund-method. Then the
Jfollowing two statements are equivalent:
(i) lim, ., p,/P,=0.
(i1) Each power series f(z)=Y."_, a,z’ with radius of convergence 1
is compactly summable (N, p) in |z| <1/|1 —af.
For a proof see [3, pp. 3845].
We will give some remarks and an example related to our last theorem.

Remarks. 1. 1If (N, p) is a Norlund-method with lim,_,  p,/P,=«
then by Theorem 5 each power series f(z)=3>_, a,z’ with radius of
convergence 1 is compactly summable (N, p) in |z] <1/|1 —«|. The limit
function o(z) is, in a neighbourhood of z =0, given by

a(z)=f(z)+ Y, a(l—a) {s,(2) - f(2)},
v=0

where 5,=3, _, a,z" are the partial-sums of f(z)=3%7_, a,2".
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2. If (N, p) is a Norlund-method with lim,_,  p,/P,=0, then we
obtain by Theorem 5 that each power series f(z)=3 ", a,z" with radius
of convergence 1 is compactly summable (N, p) in the unit disc to the
“right value” f(z). (Note that in this case the method (N, p) is not regular
in general.)

3. If (N, p) is a Norlund-method with lim,_ , p,/P,=1, then by
Theorem 5 and Remark 1 each power series f(z) =37, a,z" is compactly
summable (N, p) in C to the value q,.

ExampLE. Let us consider the Norlund-summability of the geometric
series f(z)=Y.2, z" by (N, p)-methods defined by the sequence {p,} "o
where p,=¢q", ¢>0. Then for g#1, z#1 the (N, p)-transforms of f(z) in
this case are

n Doy n Do l_zv+l
Un(Z)z sv(z)z -
v§=:0 Pn v§0 Pn -z
1 z g—1 ; i z\’
l—z 1—z ¢g""'=1 7 S \q

(a) IfO0<g<1 we have

"(g—1
Pr_ iy 74D _,,

lim n+l_1 4

n— o0 n n—w q
since the row-norm condition sup, 1/|P,| 3 7_, |p,| < 0 is also satisfied,
the (N, p)-method is regular and therefore {c,(z)} converges uniformly in
D:={z:|z] <1} to 1/(1 —z). By Léja’s theorem we know that {¢,(z)}
converges in at most countable many points z, |z| > 1. Let z,€C, |z,| > 1;
then because of

1 Zo l—q Zg+l_qn+l

0,(z0) = o - (n— o)

1—20_1—2041—11 Zo—q

we do not even have convergence in any point z,, |zo/ > 1 in this case.

(b) If g=1 we have (N, p)=(C, 1) and it is well known that in this
case {0,(z)} converges uniformly in D to 1/(1 —z) and diverges for each
point z,, |z > 1.

(¢} If g>1 we have

Mg—1
lim 2o gim 4D 1
n— oo N q"+ —1 q
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and Theorem 5 tells us that in this case {0,(z)} is compactly convergent in
[z] <1/|1 —(1—1/q)| =4 and from

o,(z)= Iz g—1 . 1=(z/q)"""!
T T Iz =1 T T (z)q)

we obtain for the limit function

1 z gq-—1

J(Z)=1—z_1—z.q—z'

4. THE BEHAVIOUR OF THE (N, p)-TRANSFORMS {0,(z)}
OUTSIDE THE CIRCLE OF SUMMATION

Let be f(z)=3"¢ a,z* a power series with radius of convergence 1.
From Theorem 5 we know that for the sequence of its (N, p)-transforms
{0,.(z)} we have

6,(z)= io p;;v 5,(2) =——=o(2).

lzl <1/11 —«al

Now we are going to study the behaviour of the sequences {o,(z)} of the
(N, p)-transforms of f(z) in |z| = 1/|1 —a.

THEOREM 6. Let (N, p) be a Norlund-method with lim,,_, ., p,/P, =0 #1
and let f(z)=Y, a,z" have radius of convergence 1. Then for each
R>=1/|1 —a| we have

[im {lnllax lo, ()|} =R-|1—aql
n—- z|=R
Proof. let R>1/|1—a| be fixed From Im,_ . |a,/""=1 and
lim,_, . p._,/P,=a(l —a)® for all ve N, it is easily computed that
[im {ln|la)§z l6,(2)}""<R-|1—al.

In the case that Tim, , , {max, _g |6,(z)|}'"<R-|1 —a| there would
exist an R < R with

max |g,(z)| < R" |1 —al”
Izl =R
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for all sufficiently large # and by using Cauchy’s integral formula we would

get
R n
<|T—al”{ = 1
[1T—af <R> (1)
for these n.

By Theorem 3 we have lim, _, ., |po/P,|""=|1 —al, and therefore from
(1) it follows that

Po

n

|a,|

fm o, <

n— oo

<1

> =

which is a contradiction to the assumption that f(z)=32_, a,z’ should
have radius of convergence 1. Hence we must have

fim {rr'lax le,(z)|}"=R-|1—a] for all RZII A
n—-oc jz|=R —

This result tells us that the sequence {0,(z)} cannot converge compactly in
a circle |z| < R where R> |1 —a| L

In our next result we show that even on an arc of |z|=R with
R>1/|1—a] the sequence {0,(z)} cannot converge compactly and it also
follows from our next theorem that on an arc of |z| = 1/]1 — «] the sequence
{0,(z)} cannot tend to zero geometrically.

THEOREM 7. Let (N, p) be a Norlund-method with lim,, ,  p,/P,=a#1
and let f(z)=Y.> 4 a,z" have radius of convergence 1. If R=1/|1 —a| and
I is a closed arc on |z| = R, then we have

im {max [0,(z)]}"" = R-[1-2].

Proof. 1. Let I be a closed arc on |z] = R=1/|1 —«| and suppose

Fm {max |o,()]} " <1. )

If £>0 is given and g€ (0, 1) we get from Theorem 6 and from (2) for all
sufficiently large n

max [o,(z)| <(1+e)",

12l

max [,(2)| <q"
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Let re (0, 1/|1 —a|) be given; then by Nevanlinna’s N-constants theorem
there exists a 8 € (0, 1) (independent of n) such that

max |o,(z)| <(g°(1 +¢)' ~7)" (3)

holds for all sufficiently large »n. Choosing ¢>0 so small that
g°(1+¢)' %<1 we get from (3)

(a) that {0,(z)} is uniformly convergent to zero in |z| <1/|1—qf
which is impossible if a4 # 0;

(b) if ay=0 then there is a first coefficient 4, #0, puo>1, and we
have

— L jm r O-n(z) d )S_lz_ (q9(1+8)1A9)n

2ni Zho+!

or

' po— 1

I_Z pnv

<Tam @

This implies that 3 %' p,_,/P,— 1 (n— o0) which is impossible because
of Theorem 2 and the assumption a # 1.

2. Let I" be a closed arc on |z| = R> 1/|1 —«| and suppose
Ha {mﬁ'x |an(z)|}l/n<k' |1 _a|’

where R<R. If ¢>0 is given we get from Theorem 6 and part 1 of this
proof for all sufficiently large n

a,(z
max —"—(n—) <e” |1 —-al"
Izl =1/|1 —«f z

g.{z)] R"e"|1—al

max < =™ |1 —a|”
izZl=R | z" | R" | "
6,(z)]  Re” |1 —a|"
max < .
r n = R"

Let re(1/{1 —al), R) be given; then by Nevanlinna’s N-constants theorem
there exists a 8 € (0, 1) such that we have

—~ 6 n
o’,,(Z) S{(%) ee(-) il __a|0‘ee(1-9)_ |1 _a|140}

z

max

fzl=r
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for all sufficiently large n and it follows

~

R 9
Hﬁ {ﬂix lo, ()} <r |1 —af <}> e (4)

Choosing ¢ >0 so small that (R/R)? e* <1 we get from (4) a contradiction
to Theorem 6.

From Theorem 7 we can deduce that the sequence {o,(z)} cannot
converge compactly in a domain G> {z: [z| =1/|1 —af }.

The remaining question, if it is possible that {g,(z)} can at least
converge pointwise outside the circle |z| =1/|1 —af, is answered by the
following theorem.

THEOREM 8. Let f(z)=3"_, a,z’ be a power series with radius of
convergence 1 and (N, p) a Norlund-method with lim,_, , p,/P,=0#1;
then for each ¢ >0 the sequence {0,(z)} converges in at most a finite number
of points z with |z| > (1/|1 —a|) +&.

Proof. 1. Let ¢>0 be given. We first suppose that the sequence {a,}
is unbounded. From this sequence we choose a subsequence {a,, } ", such
that

la,| <la,l| forn<n, and kliri la,,| /™= 1.

The corresponding subsequence of the (N, p)-transforms of f(z) is given by

z)—

ny an

Z P,_.a,z

nkvO

Z P,b.w, (5)
k v=0 ny n v=0

where b,=a,, _,/a, and w=1/z. Since lim, ., |P,|""=1/|]1—a] and
lim, , . la,|""*=1 we obtain
i

a,:z

-0 (k- o) (6)

i

for each zeC, |z| > 1/|1 —al|. If {z;};2, is a sequence of points with |z,| >
(1/|11—a]) + ¢ for which {o,(z;)} converges, then because of (5) and (6)
we obtain that the functions

=Y Pbw (7)

v=0

Q:
X
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tend to zero as k — oo in each point w,=1/z;, |w;| < 1/(|1/(1 —a)| + &). By
assumption we have |b,| <1 for all ve N, and lim,_,  |P,|""=1/|1—al;
hence for all w with |w| < 1/(|1/(1 —a)| +¢) we get the estimation

nj ny (1 — 2 v
i< 3 121 nlse- 3 (L=

v=0 v=0

(8)

where ¢>0 is a suitable constant. Consequently the functions &, (w)
(k=0,1,..) are uniformly bounded in |w|<1/(|1/(1 —a)]+¢). By the
theorem of Montel we get that there exists a subsequence {a,,kl(w)} with

R e——————— 1V
"kl( ) oWl < (/{1 —a) +¢)7!

But this is a contradiction to &nk1(0)= P,-b,=p,#0. Therefore the
sequence {0,(z)} can converge in at most a finite number of points z, |z| >
(/1 —al)+e
2. In the case of a bounded sequence {a,} of coefficients of f(z)=
2 oa,z’ we choose a subsequence {a,} with |a,|>0 and
lim, _,  |a,|"*=1 and get |b,|=la,, _,/a,|<M, where M>0 is a
suitable constant. Then the proof is analogous to part 1.
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