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Given a regular Norlund-method (N, p) one can prove that the sequence {un(z)}
of the Norlund-transforms of a power series j(z) = L~o a,z' with radius of con­
vergence r = I converges in at most countably many points outside the unit disc. In
this paper we show that for a class of non-regular N6r1und-methods the' sequence
{un(z)} converges to an analytic function in a disc which strictly contains the unit
disc, and the convergence is uniform on any compact subset of this disc. © 1992

Academic Press, Inc.

1. INTRODUCTION

As is well known, a Norlund-method is defined in the following way.

DEFINITION 1. Let {Pn}:d be a sequence of complex numbers such
that Pn := L~~o Pv ~ 0 for all n E No. Then the triangular matrix A = (IX nv )

with the elements

for O~ v~n and IX nv = 0 for v> n

generates a summability method which is called Norlund-method (N, p).

Many different items about Norlund-methods have been discussed in the
literature (see, for example, [1,2,4-7, 11]). The present paper has a con­
nection to a theorem due to Leja [8] and results of Luh [9]. Leja proved
that for a regular Norlund-method the sequence {O"n(z)} of the Norlund­
transforms of power series j(z) = L~o avzv

, with radius of convergence 1,
converges in at most countably many points outside the unit disc
[j) = {z: Izi < I}. And it was shown by Luh that for a regular (N, p)­
method we have rrmn~oo{maxrllTn(z)I}I!n=R for each closed arcF on
Izi =R> 1.

33
0021-9045/9213.00

Copyright © 1992 hy Academic Press, Inc.
All rights of reproduction in any form reserved



34 KARIN STADTMULLER

Neglecting the proposition of regularity for the Norlund-method, we will
show that the sequence {O"n(z)} can converge compactly (i.e., uniformly on
each compact subset) to an analytic function in a disc which strictly
contains the unit disc. Furthermore we will investigate the growth of
{O"n(z)} outside the domain of convergence, which will lead us to results
analogous to those of Uja and Luh.

2. NOTATIONS AND SOME PROPERTIES OF (N, p)-METHODS

Let j(z) = L~~o avzv be a power series with radius of convergence 1 and
let us consider its Norlund-transforms

where sv(z)= I. al'zl'.
1'=0

We say that the power series j(z) = L~~o avzv is summable by the method
(N, p) in a point Zo E C if the sequence {O"n(ZO)} converges, and we say that
the power series is compactly summable by the method (N, p) in a domain
G to a function O"(z) if {O"n(z)} converges uniformly to O"(z) on each
compact subset of G (notation O"n(z) ===? O"(z)).

We first give some results about spe~ial properties of Norlund-methods.
From the theorem of Toeplitz, Schur, and Silverman (see, e.g., [10,

p. 11]) it follows immediately that a Norlund-method (N, p) is regular if
and only if the following two conditions hold:

and

From the following theorem we can deduce that for each IY. E C there exists
a sequence {Pn} such that limn~ CXJ PnlPn = IY..

THEOREM 1. Let {lY.n}~~ 0 be a sequence oj complex numbers with 1Y.0 = 1
IY. n#lfor all nEN; then there exists a sequence {Pn}~=O' PnEC, with the
properties

and Pn-=IY.P no
n

We omit the simple proof.

For a Norlund-method (N, p) which is defined by a sequence
P= {Pn}~~O we now show that the convergence of the sequence
{PnIPn} ~~o implies the convergence of {Pn- viPn} ~=o for each fixed vE No.
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THEOREM 2. Let (N, p) be a Norlund-method with limn~co PnlPn=rx
(r:t. E C). Then for each fixed vE No we have

I· Pn-v (I )V1m --=r:t. -rx .
n ---+ 00 Pn

Proof For v = 0 there is nothing left to prove. Now let vEN be fixed;
then for n ~ v we get

from which together with limn~co PnlPn=rx the statement of our theorem
follows.

Our next result shows that there is a connection between the
convergence of {PnIPn} and the sequence {IPnI 1

/
n}.

THEOREM 3. Iflimn~ co PnlPn = r:t. (rx E C) then we have lim H co IPn1 1
/
n=

1/11-4

Proof From limn~co PnlPn=rx and PnlPn= I-Pn-1IPn we get
limn ~ co Pn _ IiPn = I - rx which implies our assertion.

3. (N, P)-SUMMABILITY OF THE GEOMETRIC SEQUENCE AND POWER SERIES

It has been shown in [3] that the behaviour of matrix-transforms of
{zn} is of great relevance for the behaviour of the considered matrix-trans­
forms of power series. We therefore first examine the (N, p)-transforms of
the geometric sequence {zn} which are given by

We shall prove the following result.

THEOREM 4. Let (N, p) be a Norlund-method and rx E C. Then the
following two statements are equivalent:

(i) limn~co PnIPn=rx.

(ii) The (N, p)-transforms of the geometric sequence {rn(z)} are
compactly convergent in Izl < 1/11 - r:t.1 to the limit function r(z) =
r:t./(l- (I - r:t.)z).
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Proof 1. We assume that (N, p) is a Norlund-method which satisfies

(a) For 0:#1 the limit function has the Taylor expansion r(z)=
0: L~=o (l-o:)V ZV in Izi < 1/11-0:1. Since {rn(z)} converges compactly to
r(z) in Izi < 1/11-0:1, we obtain

(n -t CIJ ).

(b) For 0: = 1 our assumption is that 't"n(z) ~ 1, from which we
easily conclude that limn~oo PnlPn= 1. c

2. We assume that (N, p) is a Norlund-method which satisfies

1imn~oo PnIPn=O:·

(a) For 0:# 1 we show that {rn(z)} converges compactly to 't"(z) =
IX/(l- (l-lX)z) = L~~O lX(l-lXr ZV in Izi < l/ll-IXI.

(i) Given r with 0 < r < 1/11 -IXI we choose e> 0 such that
(11 -IXI+e) r < 1. Then there exists an N E N such that L ~= N + 1 (11 - IX I r) v <
e/llXl and L.~~ N+ 1 {11-1X1 +e)r} v < e/(11X1 +e). For n > N we obtain

m~~ Irn(z) - r(z)1 ~ vto IP~~ v -1X(l- lXrlr
V+ IIXI v~~+ 1 (Il-IXI rr

~ i IPn-v -1X(l-lXrl rV
v~o Pn

+ v~t+ 1 IP~~ vIrv + v~t+ 1 IIXI (11 - IX I rr +e

~ i IPn-V- IX(l-IX)Vl rv+ i IP~-vlrv+2e.
v~o Pn v=N+ 1 n

By Theorem 2 the first sum converges to zero for n -t 00.

(ii) To calculate the term L.~~N+ 1 IPn-vlP,,1 rVwe first look at the
convergence of the sequence {p,,-vIP,,}':=o (v fixed). By assumption we
have lim" ~ 00 p,,1P" = 0: and therefore to e > 0 given above there exists an
N 1 E N such that for all n > N 1 we have Ip"IPn-0:\ < e. For n> N 1 and
each v with 0 ~ v~ n - N 1 we get
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~(Ial +s)(ll-al +S)".

If we choose N I large enough, then by Theorem 3 we obtain for n > Nt

(iii) For all n> N + Nt we now have

37

f lPn-vi rv_n-i:-
I lpn-vi rV + I Ipn-vl r'

,~N+I Pn v=N+I Pn v~n~N, Pn
n-N,-I 1 N,

~ (Ial +s) L (11- a! +sf rV +-1 . L \p/ll rn-/l
v=N+ I IPn /l~()

00

~(Ial+s) L {(I1-a!+s)r}"
v~N+ I

+{(I1-IXI+s)r}n. ~ Ip;1
/l=0 r

~e+ {(II-a/ +s)r}n·M,

where M=L~~o Ip/llr/ll is a constant. Since (ll-al+s)r<1 it follows
that L~=N+ I IPn-- jPnl r' tends to zero for n -t 00. Hence, together with (i)
we obtain that

max Irn(z)-r(z)I-tO
Izi ,;; r

(n -t 00),

and because r, 0 < r < 1/11 -lXI, was arbitrary we have

r (z) ) r(z).
n Izl<I/II-od

(b) Let rJ. = 1. We now show that {'t"n(z)} is compactly convergent to
r(z) == 1 in Co Let r E (0, 00) be arbitrary but fixed and s > 0 such that
r· f. < 1. Like in (ii) of part (a) we can find an N2 E N such that
IPn-vlPnl < (1 + s)· eV for all n > N z and 0 ~ v~ n - N 2 and furthermore by
Theorem 3 that IPnl > K n

, where K> 1 is a constant with rlK < 1. For
n> N 2 we obtain
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As n tends to infinity we have IPnlPn- 11 -+ 0 and (rlKt -+ 0 and because
8> 0 was arbitrarily small we have

max ITn(z) -11-+ 0
Izi ,,;; r

from which it follows that

(n -+ 00 )

This proves the theorem.

From this result we can deduce the following theorem about the
Norlund-summability of power series.

THEOREM 5. Let be txEC and (N, p) a Norlund-method. Then the
following two statements are equivalent:

(i) limn~oo PnIPn=tx.

(ii) Each power series f(z) = L~=o avzv with radius of convergence 1
is compactly summable (N, p) in Izi < 1/11-txl.

For a proof see [3, pp. 38-45].
We will give some remarks and an example related to our last theorem.

Remarks. 1. If (N, p) is a N6rlund-method with limn ~ 00 PnlPn= tx
then by Theorem 5 each power series f(z) = L~~o avzv with radius of
convergence 1 is compactly summable (N, p) in Izi < 1/11-txl. The limit
function O'(z) is, in a neighbourhood of z = 0, given by

00

O'(z)=f(z)+ L tx(1-tx)" {sv(z)-f(z)},
v=o

where sv = L~~o al'zl' are the partial-sums of f(z) = L~~o avzv.
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2. If (N, p) is a N6rlund-method with limn~Cf) Pn/Pn=O, then we
obtain by Theorem 5 that each power series f(z) = L~=o ayz Y with radius
of convergence 1 is compactly summable (N, p) in the unit disc to the
"right value" f(z). (Note that in this case the method (N, p) is not regular
in general.)

3. If (N, p) is a Norlund-method with limn~Cf) Pn/Pn= 1, then by
Theorem 5 and Remark 1 each power series f(z) = L~~o ayz Y is compactly
summable (N, p) in C to the value ao.

EXAMPLE. Let us consider the Norlund-summability of the geometric
series f(Z)=L::~o zY by (N, p)-methods defined by the sequence {Pn}:~O

where Pn = qn, q > O. Then for q #- 1, z #- 1 the (N, P)-transforms of f(z) in
this case are

n P n P 1 ZY+l
() " n-Y () " n-Y _-__

(J Z = ~ -- s z = ~ --.
n Y~O Pn Y Y~O Pn I-z

(a) If 0 < q < 1 we have

lim Pn = lim qn(q_l) O'
n ----+ 00 Pn n -+ 00 qn + 1 - 1 '

since the row-norm condition SUPn 1/IPn l L~~o IpvI < 00 is also satisfied,
the (N, p)-method is regular and therefore {(In(z)} converges uniformly in
IT):= {z: Izi < 1} to 1/(I-z). By Leja's theorem we know that {(In(z)}
converges in at most countable many points z, Izi > 1. Let Zo E C, IZol > I;
then because of

1 Zo 1- q z~ + 1 _ qn + 1

(In(ZO)=-----· n+I' -+ 00
l-zo I-zo I-q zo-q

(n -+ 00)

we do not even have convergence in any point Zo, IZol > I in this case.

(b) If q = 1 we have (N, p) = (C, 1) and it is well known that in this
case {(In(z)} converges uniformly in IT) to 1/(l-z) and diverges for each
point Zo, IZol > 1.

(c) If q > I we have

lim Pn = lim qn(q_l) = I-!
n~ Cf) Pn n~ 00 qn + I - I q
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and Theorem 5 tells us that in this case {O"n(z)} is compactly convergent in
Izl < 1/11- (l-llq)1 = q and from

1 z q - 1 n 1- (zlqt+ 1

O"n(z) = 1-z-l-z qn+l_1· q · l-(zlq)

we obtain for the limit function

1 z q-1
O"(z)=--_·-.

1-z 1-z q-z

4. THE BEHAVIOUR OF THE (N, p)-TRANSFORMS {O"n(z)}
OUTSIDE THE CIRCLE OF SUMMAnON

Let be f(z) = L~o avzv a power series with radius of convergence 1.
From Theorem 5 we know that for the sequence of its (N, p )-transforms
{O"n(z)} we have

Now we are going to study the behaviour of the sequences {O"n(z)} of the
(N, p)-transforms of f(z) in Izi ~ 1/11-al.

THEOREM 6. Let (N, p) be a Norlund-method with limn~ 00 PnlPn = a # 1
and let f(z) =L~~o avzv have radius of convergence 1. Then for each
R~ 1/11-al we have

rrm: {max IO"n(z)I}1/n=R·11-al.
n..., 00 Izl = R

Proof Let R~ 1/11-al be fixed. From rrm:n~co lanI 1/n=1 and
limn ~ 00 pn _ viPn = a(l - ar for all vE No it is easily computed that

rrm: {max IO"n(z)I}1/n~R·11-al.
n~ 00 Izi =R

In the case that rrm:n~oo{maxlzl~R IO"n(z)I}1/n<R·11-al there would
exist an R< R with
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for all sufficiently large n and by using Cauchy's integral formula we would
get

(1)

for these n.
By Theorem 3 we have lim n ~ Xi 1PolPn II/n = 11 - aI, and therefore from

(1) it follows that

which is a contradiction to the assumption that f(z) = L~=o avzv should
have radius of convergence 1. Hence we must have

IiiTI {max lan(z)I}I/n=R·11-al
n ~ Xi Izi = R

for all
1

R~--.
11 - al

This result tells us that the sequence {an(z)} cannot converge compactly in
a circle Izi ~ R where R~ 11-al- l

.

In our next result we show that evert on an arc of Izi =R with
R> 1/11-al the sequence {an(z)} cannot converge compactly and it also
follows from our next theorem that on an arc of Izi = 1/11 - al the sequence
{an(z)} cannot tend to zero geometrically.

THEOREM 7. Let (N, p) be a Norlund-method with limn~ Xi PnlPn = a # 1
and let f(z) = L~~o avzv have radius of convergence 1. If R ~ 1/11- al and
r is a closed arc on Izi = R, then we have

urn {max lan(z)I}I/n=R·11-al.
n--+ 00 r

Proof 1. Let r be a closed arc on Izi = R = 1/11 - al and suppose

IiiTI {max lan(z)I}I/n< 1.
n- co r

(2)

If e> 0 is given and q E (0, 1) we get from Theorem 6 and from (2) for all
sufficiently large n

max lan(z)1 ~(1 +et,
Izl = R
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Let r E (0, 1/11 - etl) be given; then by Nevanlinna's N-constants theorem
there exists a f) E (0, 1) (independent of n) such that

max lan(z)1 :::.:; (q8(l + e)l-oy
1=1 = r

(3)

holds for all sufficiently large n. Choosing e > 0 so small that
q8(1+e)l-o<1 we get from (3)

(a) that {an(z)} is uniformly convergent to zero in Izl<l/ll-etl
which is impossible if ao -j:. 0;

(b) if ao = 0 then there is a first coefficient QI'O -j:. 0, 110 ~ 1, and we
have

or

This implies that L.~~-ol Pn-vlPn ---.1 (n ---. 00) which is impossible because
of Theorem 2 and the assumption et -j:. 1.

2. Let r be a closed arc on Izi = R > 1/11 - etl and suppose

rrm {max lan(z)I}I/n:::.:;R.11-etl,
n --+ 00 r

where R< R. If e > 0 is given we get from Theorem 6 and part 1 of this
proof for all sufficiently large n

max I_an_~Z_)I:::.:; een 11 - etl n,
1=1 ~ 1/11-~1 z

!

an(z)! Rneenl1-etln
max -- :::.:; ---'----'-
1=1 ~ R zn Rn

l
an(z)\ Rneen 11-etl n

max --:::.:; .
r zn Rn

Let r E (1/11- etl), R) be given; then by Nevanlinna's N-constants theorem
there exists a f) E (0, 1) such that we have

max Ian~z)I:::.:; {(~)O eeO 11 _ et 1
0 . eel 1- 0) • 11 _ et II _o}n

1=I~r Z R
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for all sufficiently large n and it follows
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(4 )

Choosing e > 0 so small that (RIR)II eO < I we get from (4) a contradiction
to Theorem 6.

From Theorem 7 we can deduce that the sequence {O"n(z)} cannot
converge compactly in a domain G ~ {z: Izi = I1II - al }.

The remaining question, if it is possible that {O"Az)} can at least
converge pointwise outside the circle Izl::::: 1/11 - 0:1, is answered by the
following theorem.

THEOREM 8. Let f(z) = L:;;x"~o avzv be a power series with radius of
convergence I and (N, p) a Norlund-method with limn ~ 00 PnlPn::::: a =f 1;
then for each e > 0 the sequence {O"n(z)} converges in at most a finite number
of points z with Izi > (1/11- al) + e.

Proof 1. Let e > 0 be given. We first suppose that the sequence {an}
is unbounded. From this sequence we choose a subsequence {anJ k~ 0 such
that

and lim lankll/nk = 1.
k~w

The corresponding subsequence of the (N, p)-transforms of f(z) is given by

nk PInk
O"nk(Z)= L ;-v SAZ)=p L Pnk_VaVzv

v = 0 nk nk v = 0

ankZnk nk av ankZnk nk:::::-- L Pnk - v - Zv-nk=: -P L Pvbvwv, (5)
Pnk v = 0 a11k nk v = 0

where bV=ank-vlank and W= liz. Since limn~w IPnI 1
/
n= I/II-al and

limk~w lankll/nk = I we obtain

(k -+ 00) (6)

for each zE iC, Izi > I1II - al. If {z;}~ 1 IS a sequence of points with Iz;1 ~
(I/II-al)+e for which {O"nk(z;)} converges, then because of (5) and (6)
we obtain that the functions

nk
O'lIk(W):= L PvbvW

V
v=o

(7)
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tend to zero as k -+ 00 in each point Wi = l/z;, Iw;1 ::;; 1/(11/(1-1X)1 + e). By
assumption we have Ib v l::;;l for all vENo and limn~oo \Pn I1

/
n =1/\1-1X!;

hence for all w with Iwl ::;; 1/(11/( 1 -IX)I + e) we get the estimation

(8)

where c > 0 is a suitable constant. Consequently the functions iink( w)
(k = 0,1, ... ) are uniformly bounded in Iwl::;; 1/(11/(1-1X)1 + e). By the
theorem of Montel we get that there exists a subsequence {(J nk (w)} with

I

ii (w) : O.
nkl 0", Iwl ",(I1/(1-~)1 +e) I

But this is a contradiction to iink(O)=Po·bo=Po#-O. Therefore the
sequence {(Jn(z)} can converge in at ~ost a finite number of points z, Izi >
(1/11 - IX 1) + e.

2. In the case of a bounded sequence {an} of coefficients of f(z) =
L~~oavzv we choose a subsequence {ank } with lankl>O and
limn ~ 00 \ankll/nk = 1 and get Ibvl = lank _ v/ankl ::;; M, where M> 0 is a
suitable constant. Then the proof is analogous to part 1.
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